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The evolution of instabilities in the axisymmetric 
jet. Part 1. The linear growth of disturbances near 

the nozzle 
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The modal distributions of coherent structures evolving near the nozzle of a circular 
jet are considered. The effects produced on the instability modes by transverse 
curvature, flow divergence, inhomogeneous inflow conditions, and the detailed shape 
of the mean velocity profile, are investigated both theoretically and experimentally. 
Linear stability analysis applied to a thin shear layer surrounding a Iarge-diameter 
jet (i.e. a jet whose diameter is large in comparison with a typical width of the shear 
layer) indicates that many azimuthal modes are equally unstable. An increase in the 
relative thickness of the shear layer limits the number of unstable modes, and only 
one helical mode remains unstable at the end of the potential core. The linear model 
used as a transfer function is capable of predicting the spectral distribution of the 
velocity perturbations in a jet. This provides a rat iodl  explanation for the stepwise 
behaviour of the predominant frequency resulting from a continuous increase in the 
jet velocity. 

1. Introduction 
The initial evolution of an axisymmetric jet has been carefully and continuously 

investigated ever since jet propulsion became technologically feasible. Nevertheless, 
the mechanisms affecting mixing, combustion and the generation of noise are not 
completely understood nor can they be fully predicted or controlled. 

It was initially believed that the statistically describable behaviour of a turbulent 
jet is totally independent of the conditions near the nozzle. The discovery of large 
coherent structures (Crow & Champagne 1971 ; Brown & Roshko 1971) in the mixing 
layer and in the developing portion of the axisymmetric jet started a new trend of 
investigations attempting to assess the connection between these structures and the 
evolution of the flow. The large coherent structures whose characteristic dimensions 
are commensurate with the width of the flow resemble the vortices generated by an 
inviscid instability . 

The roll-up of travelling inatability waves into a periodic array of vortices in a plane 
mixing layer was predicted by Michalke (1965) and demonstrated experimentally by 
Freymuth (1966). The analysis was extended by Michalke (1971) and his coworkers 
to include the effects of compressibility, circular geometry, variations in the shape 
of the velocity profile, and disturbances propagating in the spanwise direction. The 
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application of the analysis to a non-divergent shear layer is rather restrictive because 
it implies that a t  some distance downstream only the most amplified wave will 
dominate the flow. In  practice, however, the width of the shear layer increases in the 
direction of streaming, resulting in a continuous shift of the most amplified instability 
waves toward lower and lower frequencies. This effect was realized by Mattingly & 
Chang (1974), who tried to  adapt the quasi-parallel stability calculations to their 
axisymmetric-jet experiment. Crighton & Gaster (1976) used a multiple-scale ex- 
pansion, in terms of a small parameter defining the divergence of the mean flow, to  
calculate the growth rates and phase speeds of large-scale, but small-amplitude, wavy 
disturbances in an axisymmetric jet. This expansion method was applied by Gaster, 
Kit & Wygnanski (1985) to a divergent plane mixing layer and compared with an 
experiment conducted in a fully turbulent flow. The applicability of the linear 
stability theory to turbulent flow is somewhat questionable because there is no steady 
velocity field in existence upon which a small perturbation may be superimposed. 
One tends to select the mean velocity profile as being the representative quantity 
of the steady motion, recognizing the possibility that such a profile might never occur 
at any instant in time. By assuming that the random changes in the mean velocity 
occur on a timescale that is short in comparison with a representative period 
associated with the large coherent structures and by neglecting possible exchanges 
of momentum among largely disparate scales, Gaster et al. applied the inviscid 
stability theory with a large measure of success. This gave an impetus to  the present 
investigation, whose initial purpose was limited to  the application of the linear model 
to  the axisymmetric jet. 

The thin axisymmetric shear layer is unstable to a large number of discrete 
azimuthal modes (Plaschko 1979), but the fully developed jet, at some distance 
beyond the termination of the potential core, is unstable to the helical mode only 
(Batchelor & Gill 1962). The first comprehensive study of the response of an 
axisymmetric jet to a controlled axisymmetric (mode wt = 0) excitation was done 
by Crow & Champagne (1971). They observed the emergence of large wave-like 
structures which attained the greatest total downstream amplification at a Strouhal 
number, based on the jet diameter, of 0.3; wave modes of higher frequencies peaked 
closer to the nozzle exit while those of lower frequencies persisted farther downstream. 
The excitatioh also affected the mean flow near the nozzle and, although the level 
of the excitation is considered to be high, the structures observed resemble wave-like 
structures photographed earlier in the turbulent flow of a high-Reynolds-number, 
unexcited jet (Bradshaw, Ferris & Johnson 1964). Michalke (1971), Fuchs (1972) and 
Mattingly & Chang (1974) all recognized the potential importance of the helical 
(m = 1) mode which should have been amplified in an axisymmetric jet at rates that 
are comparable, at least, to the amplification rates of the plane (m = 0) mode of 
instability. Experimental evidence for the existence of spinning modes in a high- 
Reynolds-number jet was sketchy. Drubka (1981) observed these instabilities 
visually in the jet core region. Flow visualization based on laser-induced fluorescence 
in a fully developed axisymmetric jet suggests that  the spinning mode dominates the 
flow at large distances from the nozzle exit (Dimotakis, Lye t Papantoniou 1983). 

The experiments reported by Strange (1981) represent a systematic study in which 
an axisymmetric, high-Reynolds-number jet was excited at three modes (m = 0, 1 
and 2) independently. The measurements are compared with the linear stability 
analysis (Plaschko 1979; Strange & Crighton 1983) and show that the growth rates 
of modes m = 0 and 1 are comparable. The phase velocities and the radial distribution 
of the educed large structures compare quite well with the theory, but the streamwise 
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rates of amplification do not. The unfavourable comparison with measured data 
appears to stem, in part, from the nonlinear response of the instability to the strong 
levels of excitation used, but the type and form of the predominant nonlinear 
interactions cannot easily be determined from Strange's data. 

The overall purpose of this research is to examine the generation of large coherent 
structures in a jet, assuming that they are synonymous with instability modes, and 
to observe their evolution in the direction of streaming in the presence of the leading 
nonlinearities. In  the first part of this investigation, some of the peculiarities of the 
axisymmetric configuration and the inhomogeneous conditions existing in the plane 
of the nozzle are discussed. For example, the effects of the transverse curvature on 
the evolution of disturbances in the mixing layer surrounding the core of the jet are 
analysed. These effects are often neglected on the premise that the shear layer is thin 
relative to the radius of curvature .of the core, but this premise is violated a short 
distance downstream of the nozzle. The finite dimension of the core may limit the 
number of unstable modes able to coexist and interact at  any given cross-section. 

2. A description of the apparatus and methods of data acquisition 
2.1. The jet facility and the instrumentation 

A schematic diagram of the jet facility is shown in figure 1.  The air used in the 
experiment is supplied by a central, high-pressure source (100 p.s.i.g.). The air passes 
through pressure regulators and control valves before entering the apparatus at the 
top of a rectangular plenum chamber. It then passes through a series of perforated 
plates and acoustic dampeners before entering a smaller cylindrical plenum. This 
chamber is approximately 80 cm long and has a circular cross-section 30 cm in 
diameter; it  houses two automobile air filters, a honeycomb, and three screens. The 
flow exits through a spun aluminium nozzle ending with a diameter of 5 cm. At the 
end of the nozzle, the flow attains a ' top-hat ' velocity profile, with the exception of 
a thin boundary layer present near the solid surface. 

A unique traversing mechanism (figure 2), controlling the axial and radial 
movement of the hot-wire probes used for measurement of velocity, was designed. 
It positions eight hot-wire sensors (displaced azimuthally 45" apart) individually at 
any prescribed radial location; it is then capable of moving all sensors simultaneously 
an equal distance in the radial direction. A speaker was placed at the base of the 
plenum chamber to generate controlled, axisymmetric disturbances at the exit plane 
of the nozzle. Eight speakers, equally displaced around the azimuth, generated 
higher-order modes by blowing thin jets of air through narrow slits located near the 
lip of the nozzle. These speakers were driven by a phase-shifting network which was 
activated at the desired frequencies and amplitudes by a signal coming from a 
function generator and passing through a power amplifier. The jet velocity U, varied 
between 3 m/s and 8.5 m/s, changing the Reynolds number based on the exit 
diameter of the nozzle from lo4 to 2.9 x lo4, while the turbulence level at the exit 
plane of the jet changed from 0.17 % at 3 m/s to 0.094 % at 8 m/s. 

Hot-wire anemometers, which were built locally, were used in conjunction with 
Disa Model 55Pll sensors throughout this investigation. The hot wires, made of 
tungsten, were 5 pm in diameter and had a length-to-diameter ratio of 300; they were 
kept at a constant overheat ratio of 1.8 and had a maximum frequency response of 
30 KHz. The signals were amplified to take advantage of the maximum dynamic 
range of the analog-to-digital converter, which operated between & 10 V. All channels 
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Plenum speaker 

FIGURE 1.  Air-jet facility. 

were sampled simultaneously 4096 times a second, giving a maximum frequency 
response (Nyquist frequency) of 2048 Hz. 

In  order to retain phase information, the excitation signal was recorded together 
with the velocity information. The sampling frequency was 36 times higher than the 
frequency of the excited wave, giving a cyclical resolution of 2' relative to the 
fundamental component of the phase-locked signal. The typical length of a velocity 
record used for averaging was equivalent to 480 periods of the excitation frequency. 
The data were stored on a digital tape. The computer used for data acquisition waa 
the DEC LSI 1123. 

The hot wires were calibrated in the exit plane of the jet against a standard Pitot 
tube at seven different velocities. Before the initiation of data acquisition, the radial 
location of each of the eight wires was adjusted relative to mean flow, rather than 
by geometry. This was done by placing each of the eight hot wires at  the centre of 
the mixing layer ( r  = Rt), where the mean velocity is reduced to one-half of the 
centreline value. After completing the fine alignment of the probes, the flow was 
traversed by all wires simultaneously in the radial direction. The location Ri for each 
mean velocity profile was determined by using a least-squares fit to all data points 
at  which the mean velocities satisfied 0.35 < U / U j  < 0.65. 

2.2. The decomposition of phase-locked data into azimuthal mode8 

Let q ( t , $ )  represent a signal having a periodicity T in the time ( t )  domain and 27t 
in the azimuthal coordinate ($). For a constant $ ($ may also be considered aa a 
parameter), the signal can be expressed as a Fourier series 

Q) 

d t ,  $1 = a,($) + X [an($)  cos (n@) + bn($) sin (nS039 (2.14 
n-i 
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(4 

FIGURE 2. Radial traverse: (a) bottom view showing spiral grooves; (b)  top view showing jet 
nozzle. 

where f i  is the fundamental frequency, n is a positive integer, and the coefficients a, 
and b, are determined by the orthogonality condition 

The fundamental component (qf) of the signal is determined by considering the 
fundamental periodicity only (i.e. by letting n = l),  

(2.24 Qf(7, 4 )  = ar($) cos ( 2 m )  + bf(#) sin (2x71, 



196 J .  Cohen and I .  Wygnanski 

with 
(2.2b) 

where 7 is the dimensionless time expressed as a fraction of the period T (i.e. 7 = t / T ) .  
Using the periodicity 2x in the azimuthal direction, the coefficients at($) and b,($) 
can be expressed as 

m 

at($) = co+ x 
m-1 

W 

and similarly bA$) = eo+ x 
m-1 

Substituting (2.3) and ( 2 . 4 ~ )  into (2.2a), one obtains 
r m 1 

W 

{em cos (m$) +gm sin (m$))] sin (2x7). (2.5) 

Equation (2.5) represents a pattern in which the amplitude of the wave (the term 
inside the square brackets) varies sinusoidally with $ while the temporal periodicity 
is independent of the azimuthal coordinate. 

For the axisymmetric case (m = 0), one obtains 

where A, is the amplitude of the wave and yo is its phase. For higher-order modes 
(m 9 O ) ,  

qf, m(7 ,  $1 = [Cm cos (m$) +dm sin (m$)l cos (2x7) 

+ [em cos (m$) +gm sin (m$)] sin (2x7). (2.7) 

I n  order to  express (2.7) as a combination of running waves, the following substi- 
tutions are made : 

1 = +(cm+gm); j = a(dm+e ). 

h = i(cm -gm) ; k = +(ern - dm). j  
? \  (2.8) 

Then, after using simple trigonometric relations, (2.7) has the form 

qf, = A+, cos(2~~-rn$-y+,)+A-, cos(2x7+m$--y-,), ( 2 . 9 ~ )  

where A+, = (Z2+k2)i; A _ ,  = (h2+j2)f; 1 
(2.9b) 

A+, and y+m represent the amplitude and the phase, respectively, of a forward- 
running wave while A_,  and y-m represent the amplitude and phase of a backward- 
running wave. 
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3. Analysis 

3.1.1. Dimensional considerations 
A single velocity scale and a single lengthscale may describe the evolution of a plane 

wavetrain in a two-dimensional mixing layer. A quotient between the wavelength 
of the disturbance, which has a characteristic frequency Ff and is convected 
downstream at a velocity U, ( A ,  = U,/Fp), and a typical width of the mixing layer 
8 yields a dimensionless number 2nFf O/  U,  which controls the amplification or the 
decay of the perturbation. The mean flow in the axisymmetric mixing layer is 
constricted by the diameter of the jet column, which introduces an additional 
lengthscale into this problem, permitting the evolution of an infinite number of 
discrete helical instability modes. 

To explore the importance of the additional length (R+) relative to an azimuthal 
wavelength with which it may scale, the following dimensional analysis was carried 
out. The velocity and pressure fluctuations used in the stability analysis are described 

u = Fu(r) exp[i(m-Pt+m$)]+(*), (3.la) 

3.1. Some unique features of the axisymmetric confiuration 

by 

v = FJr)  exp[i(m-/?t+m$)]+(*), (3.1 b) 

where Fu(r), FJr)  and FJr) are the amplitudes of the three components of the velocity 
perturbation in the streamwise direction (x), the radial direction ( r ) ,  and the 
azimuthal direction ($), respectively ; Fp(r) represents the pressure fluctuation ; the 
symbol (*) refers to a complex-conjugate term; B is the frequency of the wave 
( B  = 2nFf); m is the azimuthal mode number; and a is a complex constant whose 
real part (a,) gives the wavenumber while the imaginary part (ai) describes the 
growth rate of the wave. 

The linear disturbance equation, expressed i s  terms of the amplitude of the 
pressure fluctuation Fp (Plaschko 1979) for inviscid and incompressible flow, is given 
by 

where no(r) is the prescribed mean velocity profile and c = P/a, for which the ratio 
F/a, represents the phase velocity of the wave cph. 

Shifting the origin of the coordinate system to the centre of the shear layer by 
letting the width of the jet column Ri coincide with the radial distance at which the 
local mean velocity drops to one-half of its value on the centreline U, and dividing 
each length by an equivalent plane momentum thickness of the shear layer 
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and each velocity by U ,  defines the following dimensionless quantities: 

J .  Cohen and I .  Wygnanski 

The dimensionless form of (3.2) becomes 

where differentiation with respect to g is denoted by a prime. 
Equation (3.4) reflects the importance of the parameter Rile, describing the ratio 

between the radius of the jet and the width of the shear layer. The significance of 
this parameter is appreciated by recalling that, in the two-dimensional mixing layer, 
a given ratio of 8/A determines uniquely the solution for an amplified mode. In  the 
axisymmetric case, a whole family of solutions depending on the parameter Rt/e  
exists (see also Michalke & Hermann 1982). Moreover, by substituting the azimuthal 
wavelength (As = 27rR;/m) into the last term in (3.4) (as will be demonstrated in 
§3.2.1), the importance of the ratio between the azimuthal and axial wavelengths 
becomes apparent. 

3.1.2. The natural evolution of disturbances in the axisymmetric mixing layer 
The length of the potential core, determined from the constancy of the velocity 

on the centreline of the jet, is approximately 3.5 diameters for Re, = UjD/  
v % 2.7 x 104(Uj = 8 m/s), as shown in figure 3. The mixing layer is almost parallel 
near the nozzle ( z / D  < 0.5) but it spreads rapidly farther downstream (1 < x / D  < 4). 
Nevertheless, the ratio Ri/e  decreases steeply from x / D  = 0.125 (figure 3). Mean 
velocity profiles normalized by the local velocity of the jet on the centreline ( Ua) ere 
plotted versus (r - Ri)/e  for several downstream locations in figure 4. The solid lines 
describe a family of fitted profiles having the form 

Uo(v)  = 0.5{1-tanhq[1+sechZq(Cl tanhv+C,)]}; 
- 

(3.5) t r-Ri 
= 0.5 C3 - e ,  

where To(?) = U / U a ;  C, and C, are constants describing the symmetric and 
antisymmetric corrections, respectively, to the classical hyperbolic tangent profile ; 
and C, represents the divergence of the centre of the mixing layer from the centreline 
of the jet. The last constant is related to C, and C, by the definition of the 
quasi-two-dimensional momentum thickness and is given by 

This equation applies whenever a potential core having a constant velocity U ,  exists. 
The velocity profiles shown in figure 4 are not self-similar since 8 does not increase 
linearly with x (figure 3). One may recall that the velocity profiles chosen by Michalke 
(1971) were also not self-similar. 

Linear stability analysis was applied to this family of the mean velocity profiles 
for the first seven azimuthal modes after assuming that the flow is inviscid and 
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FIQURE 3. Streamwise variation of length and velocity scales: a, planar momentum thickness; 0, 
ratio between jet radius and the planar momentum thickness; a, centreline mean velocity. 
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FIQURE 4. Mean velocity profiles measured at several downstream locations. The symbols represent 
data points and the solid lines represent fitted profiles having the form given in equation (3.5). 

quasi-parallel (0 d m d 6) .  The dimensionless amplification rates -a, 6 were calcu- 
lated as a function of the dimensionless frequency 21cf6/Uc for all the streamwise 
locations. These calculations show that at z / D  = 0.125 (corresponding to Rt/e = 77), 
the amplification rates of the first four azimuthal modes are almost indistinguishable 
from one another; only the maximum amplification rates of modes 4-6 fall slightly 
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FIGURE 5. Spatial growth ratio -ai@ as a function of the dimensionless frequency /3B/Uc as 
calculated for several downstream locations and mode numbers: -, m = 0; - - -, 1, -.---, 2;  
+ + +, 4; ---, 6. 

short of the maximum rates attained by the lower azimuthal modes (figure 5a). As 
the mixing layer widens (Ri/8 decreases), the relative importance of the higher 
azimuthal modes (m 2 2) diminishes and, at  the end of the potential core, only the 
helical (m = 1 )  and the axisymmetric (m = 0) modes remain amplified (figure 5f). A t  
large values of Rile (corresponding to x / D  = 0.5), there is no observable difference 
in the amplification rate of modes 0 and 1 ;  at Rile x 13.1 (i.e. x / D  = l), the 
axisymmetric mode undergoes the strongest amplification at  all but the lowest 
frequencies. At Ri/8 = 6.6 ( x / D  = 2), the strongest rate of amplification for both 
modes is almost equal ; the axisymmetric mode dominates the disturbances at high 
frequencies while the helical mode does so in the low-frequency range of the spectrum. 
At Rile < 4.82 ( x / D  2 3), the amplification rate of the helical mode dominates the 
flow at all frequencies; consequently, one expects this mode to control the evolution 
of the fully developed axisymmetric wakes and jets (see Batchelor & Gill 1962; 
Mattingly & Chang 1974). 

The emergence of mode 1 as the dominant instability at  the end of the potential 
core was also predicted by Michalke & Hermann (1982). Their quantitative results 
are, however quite different. In order to assess the source of these differences the 
stability calculations were repeated for the velocity profile used by Michalke & 
Hermann, reproducing their results identically. A detailed comparison between the 
two sets of calculations is provided in figure 6 for B+/8 = 13.1 and 3.85. The two 
velocity profiles are compared in figure 6 (a, b). The solid curve fits the data obtained 
in the present experiments (equation 3.5) while the dotted profile corresponds to the 
one used by Michalke & Hermann. The calculated spatial amplification rates for 
modes 0 and 1 are shown in figure 6 (c ,  d). 
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FIGURE 6. Comparison of the stability of calculations obtained in the present investigation with 
those ohtained by Michalke & Hermann (1982). (a) mean velocity profiles for Ri/e = 13.1: -, 
profiles used in the present investigation; - - -, profile used by Michalke & Hermann. (a) As (a) 
but for Rile = 3.85. (c) Spatial growth rate versus the dimensionless frequency as calculated for 
the mean profiles given in (a) ; baaed on the solid profile: -, m = 0; - - -, m = 1 ; based on the 
broken profile: -.-.-, m = 0 ;  + + +, m = 1. (d )  As (c) but for Rt/8  = 3.85. 

The potential core terminates in the present calculations at z / D =  4 and 
Rile = 3.85, while it still prevails according to the mean profile chosen by Michalke 
& Hermann (1982) even at lower values of R+/e. The diameter of the jet column, as 
expressed by the location at which = 0, is therefore an additional independent 
length governing the instabilities. 

One may conclude from this comparison that, for identical values of Ri/e,  the radial 
velocity gradient affects the range of amplified frequencies as well as the number of 
the amplified modes. The calculations made in the present paper at Rile = 3.85 
suggest that the amplification rate of the axisymmetric mode is insignificant relative 
to the helical mode for all frequencies considered. The calculations of Michalke & 
Hermann (1982), for identical Ri/e,  indicate, on the other hand, that the amplification 
rates of modes 1 and 0 are identical for Strouhal number St, > 0.25. The calculations 
presented in our work are in agreement with the conclusions of Batchelor & Gill 
(1962), who stated that the axisymmetric perturbations cannot amplify in the fully 
developed jet. 

The variation of phase velocities with St, for various Rile are plotted in figure 7. 
For large St,, corresponding to high-frequency oscillations, and for R+/O 3 10, all 
modes calculated are non-dispersive ; the dispersiveness of the various modes spreads 
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FIGURE 7. Phase velocity e,,/U, as a function of the dimensionless frequency @e/Ua &a calculated 
for several downstream locations and mode numbers. -, m = 0; - - -, 1 ; 2; + + + , 4; 

, 6. _ _ _  

toward higher St, with decreasing Rile. At Rile < 5 (corresponding to x / D  > 3), the 
axisymmetric mode is dispersive over the entire range of its amplified frequencies 
while the azimuthal mode is not dispersive a t  all. At  x / D  = 3, the normalized phase 
velocity of the zeroth mode varies from 0.65 < cph/U, < 1 while the corresponding 
phase velocity of mode 1 is 0.57 irrespective of St,,. The phase velocity of this mode 
decreases slightly with increasing x / D ,  varying from 0.63 at x / D  = 2 to 0.52 a t  
z / D  = 4. The large eddies in an axisymmetric mixing layer are convected downstream 
at a velocity in the range 0.65 0, to 0.5 U, between 2 < x / D  < 4 (Petersen 1978; 
Bradshaw et al. 1964; Davies, Fisher & Barratt 1963). It is suggested, therefore, that 
the azimuthal mode is prevalent at the end of the potential core. Flow visualization 
in an unexcited jet (Dimotakis et al. 1983) provides some additional evidence that 
this may be the case. 

The fact that for R+/8 > 10 many modes are not dispersive over a broad range of 
frequencies permits resonant interactions to occur. The non-dispersive character 
among so many modes (at R+/6 > 10) over a broad range of frequencies makes a 
variety of resonant interactions possible; some of these interactions will be discussed 
in Part 2 of this paper (Cohen & Wygnanski 1987). 

The dependence of the maximum amplification rates on the distance from the 
nozzle is plotted in figure 8(a)  for several azimuthal modes, and the corresponding 
frequencies St, at which the maximum amplification rate occurs are plotted in figure 
8 (b). The distance over which a given mode amplifies become shorter with increasing 
mode number except for mode 0, whose amplification rate is overtaken by mode 1 
at z / D  z 2.5. The Strouhal number of the most amplified axisymmetric mode is 
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FIQURE 8. Streamwise variation of (a) the spatial growth rate of the most amplified wave, ( b )  the 
corresponding dimensionless frequency: A, m = 0 ;  D, 1 ; 0, 2; Q, 4; 0 , 6 .  

k1rn-t unstable 

d m a t  unstable 

- 5  

FIQURE 9. Radial distributions of the amplitudes of the streamwise velocity component of the 
oscillations as calculated for several downstream locations for modes: -, m = 0 ;  - - -, 1. (a) 
x / D  = 0.125; ( b )  0.5; (c) 1.0; ( d )  2.0; (e) 3.0; (1) 4.0. 
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much larger than the corresponding St, of any other mode beyond x / D  = 1 
(figure 8b) .  The Strouhal number corresponding to the most amplified waves of all 
azimuthal orders decreases toward the end of the potential core. 

The calculated radial distributions of the amplitudes of the u-component of the 
oscillations a t  0.125 < x / D  < 4 are plotted in figure 9 for modes 0 and 1. The 
axisymmetric mode is depicted by a solid curve and the helical mode by a dotted 
line. The differences between these modes are becoming more discernible with 
increasing x / D .  For x / D  < 1, the differences in the radial distribution of lull are small 
indeed, but the importance of the boundary conditions on the high-speed side of the 
jet become more pronounced at x / D  2 2. 

3.2. The initial evolution of the axisymmetric jet 

The following discussion is concerned with the initial evolution of axisymmetric jets 
with and without external excitation. In  $3.2.1 the limiting case of a thin mixing 
layer (Rile 9 1) is analysed and the results stressing the evolution of different 
azimuthal modes are compared with some phase-locked data produced by subjecting 
the jet to  axisymmetric and helical excitation. I n  $3.2.2 the natural (unexcited) initial 
evolution of the axisymmetric mixing layer is considered. 

3.2.1. The initial evolution of the externally excited jet 
Numerical calculations presented in $ 3.1.2 (figure 5 a) suggest that the initial rates 

of amplification of all azimuthal modes considered are approximately the same, 
provided Rile >> 1.  The general implications of these observations may be analysed 
by defining a small quantity E such that 

and rearranging (3.4) to  obtain 

Since y" = 0(1) within the shear layer (i.e. within the region in which U' =+ 0 and 
U" + 0), one may expand the term 

(1 +Ey")-l = 1 - € y +  (€?J)2-. . . , (3.9) 

and this, for ( ~ y ) ~  < 1,  results in 

(3.10) 

The terms on the right-hand side of (3.10) are smaller by order E relative to the 
corresponding terms on the left-hand side and, therefore, can be neglected; hence, 

(3.11) 

where all the azimuthal information is contained in the square brackets of (3.11), 
which may be rewritten as follows : 

m2E2+a2 = 8' [(:)'+a2] = e2 {a: [ 1 + ( ~ - ] - a f + 2 i a r a i } ,  (3.12) 



Evolution of instabilities in the axisymmetric je t .  Part 1 205 

FIUURE 10. Phase-averaged streamwise velocity signatures measured at x / D  = 0.45, ( r -Rt ) /B = 0 
and various azimuthal locations while the jet was subjected to a periodic wave having a frequency 
of 204 Hz and an azimuthal mode number: (a) m = 0; (b)  1. 

where the complex eigenvalue a is expressed by its real and imaginary constituents 
a = a,+iai. Since the streamwise wavelength is A, = 27t/ar and the azimuthal 
wavelength is Ad = 2nRi/m, the term in the square brackets of (3.12) represents the 
ratio of the two lengths and may be rewritten as 

Thus, whenever (A,.A&2 4 1, (3.11) becomes independent of the azimuthal mode 
number and is equivalent to the plane Rayleigh equation expressed in terms of 
pressure fluctuations. Consequently, all azimuthal modes of order unity undergo 
identical evolution, provided the shear layer emerging from a sizable nozzle is thin 
(i.e. 6/Ri < 1). The axisymmetric mode m = 0 evolves exactly as if the mean flow 
were two-dimensional; for other modes, the simplification breaks down when the 
excitation frequency is low (i.e. A, is relatively large). 

The evolution of the axisymmetric (m = 0) and the helical (m = 1 )  modes with 
downstream distance was investigated experimentally. The exit velocity of the jet 
was 8.1 m/s with ensuing Reynolds number Re,, x 2.4 x lo4 ; the excitation frequency 
(Ff) was 204 Hz, corresponding to a Strouhal number based on the diameter of the 
nozzle St, = F, D/Uj  = 1.28. Measurements were carried out at nine streamwise 
locations between x / D  = 0.3 and 0.7,  for which the parameter Ri satisfies 18 < Ri/ 
8 < 80, corresponding to a Strouhal-number range based on 6 ranging over 0.008 < 
Ff6/ U, < 0.035. The streamwise distance covered in the experiment corresponded 
approximately to a single wavelength at the excitation frequency. 

Typical phase-locked perturbation velocities simultaneously recorded by eight hot 
wires located at x / D  = 0.45 and r = Ri and separated azimuthally by an angle q5 = $I 
are shown in figure 10. When the jet was excited by an axisymmetric mode (figure 
10a), the velocity signals recorded by each sensor at a given time were almost 
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XlD 

0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 

0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 

Average Maximum 

M = O  

100.OOO 
100.OOO 
100.OOO 
100.OOO 
100.OOO 
100.OOO 
100.OOO 
100.OOO 
100.OOO 

6.668 
7.322 
7.773 
7.755 
7.410 
8.277 
9.031 
8.572 
8.230 

M = - 1  M = + l  M = O  

(a) Excitation of mode 0 
5.310 7.939 1OO.OOO 
5.708 5.708 100.000 
5.894 8.437 100.OOO 
6.816 7.886 100.OOO 
5.598 7.766 1OO.OOO 
4.187 7.317 1OO.OOO 
4.614 8.062 100.OOO 
4.301 8.408 100.OOO 
4.372 8.647 100.OOO 

(b) Excitation of mode 
3.866 100.OOO 
3.202 100.OOO 
5.465 100.OOO 
7.519 100.OOO 
7.343 100.OOO 
8.039 100.OOO 
7.254 1OO.OOO 
9.361 1OO.OOO 

10.531 1OO.OOO 

+1 
5.366 
6.692 
6.618 
7.045 
7.279 
9.416 
9.194 
9.260 
8.821 

M = - 1  

6.539 
6.593 
6.554 
6.554 
5.958 
3.920 
4.785 
5.557 
5.440 

4.228 
2.371 
5.723 
8.594 
9.516 
8.307 
8.341 

12.725 
15.322 

M = + l  

7.006 
7.836 
8.515 
8.535 
9.965 
8.552 
8.564 
8.221 
9.953 

1OO.OOO 
100.OOO 
100.OOO 
100.OOO 
100.OOO 
1OO.OOO 
100.OOO 
100.OOO 
1OO.OOO 

TABLE 1. The evolution of azimuthal modes in a jet subjected to external excitation 

identical, as shown in the.figure. Exciting the jet in a clockwise mode produced a 
phase delay among the various sensors with a circumferential periodicity of 27t (figure 
lob). A careful examination of Figure 10 reveals that the velocity signals are not 
always perfectly sinusoidal and the separation angle $ between the two adjacent 
sensors may not be precisely in. Nevertheless, the results prove that the jet can be 
excited by modes that are not axisymmetric. 

The relative amplitudes of modes 0, 1 and - 1 investigated at the nine streamwise 
locations are shown in table 1. Two quantities are tabulated for each azimuthal mode 
number at every z / D  considered: (i) the maximum value of the amplitude of a given 
mode; and (ii) an amplitude that is averaged over all radial locations measured. In  
both cases, the amplitude of the excited mode was an order of magnitude higher than 
the amplitudes of the unexcited modes. Thus, over the range of distances considered, 
the natural coupling among different modes appears to be secondary. 

The divergence of the jet, as expressed by the rate of decrease of R+/8 and the rate 
of growth of 8 with z / D ,  is shown in figure 11. External excitation affects do/& in 
this flow, as it does in the plane mixing layer (Oster t Wygnanski 1982); it is a 
nonlinear effect which will be addressed in the future. For z / D  < 0.45, the flow is 
almost parallel and all the measured velocity profiles (figure 12a) are self-similar and 
agree quite well with the profile suggested by Michalke (1971), which is also plotted 
for comparison. The constancy of 8 in this region permits one to plot a single profile 
to represent the data, in spite of the inherent lack of similarity in the expression 
suggested by Michalke. Measurements made a t  larger z / D  and plotted in the same 
coordinates show clearly the absence of similarity and the deviation from the profile 
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FIGURE 11. The divergence of the jet aa expressed by the downstream evolution of (a) Rt/€J, and 
(a) 8, while the jet waa subjected to external excitation of a periodic wave having a frequency of 
204 Hz and azimuthal mode number: A, m = 0 ;  m, 1; U, = 8.1 m/s, D = 25.4 mm. 
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FIGURE 12. Streamwise similarity of mean velocity profiles when the jet was subjected to external 
excitation with F, = 204 Hz at U, = 8,l m/s, D = 25.4 mm and m = 0. The solid lines correspond 
to the analytical expression suggested by Michalke (1971). 
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- 5  0 5 - 5  0 5 

(I - w e  (r  - 4)/@ 
FIGURE 13. Azimuthal similarity of mean velocity profiles for forced jet with forcing frequency 
204 Hz, U, = 8.1 m/s, D = 25.4 mm. The solid lines are the expression given in equation (3.13). 
(a)  x / D  = 0.3, m = 0, Q = 0, w = 0; ( b )  x / D  = 0.65, m = 0, Q = 0.2, w = 0; ( c )  x / D  = 0.3, m = 1, 
Q = 0, w = 0; ( d )  x / D  = 0.65, m = 0, Q = 0.125, w = 0. 

fitted by Michalke (figure 12 b). Consequently, for x / D  >, 0.5, the following analytical 
expression describing the mean velocity is used in the stability analysis : 

- 

0- ( r )  - 0.5 [1+ tanh ( $ ) I + &  tanh2 (6)  sech2 ( 6 )  + W tanh (6)  sech4 (E), (3.13) 
ui 

where 6 = b[Ri/r-r/Ri] and Q and W are constants representing, respectively, the 
symmetric and antisymmetric corrections to Michalke's basic profile, which can be 
recovered by letting Q = W = 0.  The constant b is related to Q and W by the definition 
of the momentum thickness, which is determined experimentally and is given by 

R1 

(3.141 

Thus, for given values of Q, W and the momentum thickness, (3.14) can be solved 
iteratively for b. 

The mean profiles, measured at x / D  = 0.3 and 0.65 while the flow was excited by 
either mode 0 or mode 1,  are plotted in figure 13. The mean flow is axisymmetric 
for all cases shown in figure 13, as may be deduced from the eight profiles measured 
at  eight different azimuthal locations separated from one another by A# = 45". The 
abscissa in figure 13 is (r- Ri) /9;  the radial position of each probe was adjusted to 
be zero at  r = Ri, while the value of 9 used was spatially averaged over the eight 
azimuthal locations. All the profiles fit the analytical expression given in (3.13) well ; 
this expression is also plotted in figure 13 for each of the four cases considered. For 
x / D =  0.3, Q and W vanish, reducing (3.13) to Michalke's profile, while for 
x / D  = 0.65, Q = 0.2 for axisymmetric excitation and Q = 0.125 for mode 1 
excitation. 
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Calculations of linear stability theory were performed using the mean velocity 
profile given in (3.13). The radial distributions of the amplitudes of the streamwise 
velocity fluctuations obtained theoretically for modes 0 and 1 at eight downstream 
locations are drawn in figure 14 (solid lines). These calculations are compared with 
experiments by equating the areas under each curve. The experimental results 
obtained for the axisymmetric excitation are marked by triangular symbols in figure 
14, while the results marked by square symbols correspond to the helical mode of 
excitation. The agreement between the theoretical and the measured radial distri- 
butions of amplitudes is fairly good for both modes; in fact, the axial evolution of 
the first two azimuthal modes is similar, as predicted for the limit OlR; 4 1. 

A critical assessment of the theoretical results associated with the limiting 
condition of OlRi Q 1 is done by comparing global quantities integrated across the 
shear flow, such as the overall amplification rates of the two modes, and then the 
detailed radial distributions of the amplitudes and the phase angles of the u- 
fluctuations for both modes of excitation. Three different criteria are used to define 
the overall amplification rate of the disturbances in the downstream direction : (i) the 
maximum value of the amplitude of u at each x-station; (ii) the integral of IuI over 
the area confined between r = Ro.86 and R,.,, corresponding to the radial positions 
where the mean velocity has the values of 0.95 and 0.1 respectively; and (iii) dividing 
the integral calculated in (ii) by the area of the flow considered. The gain of lul is 
always normalized to unity at the first station xo at which measurements were taken. 
All three methods of assessing the rate of amplification versus Ff e /Uj  are shown in 
figure 15. For a given Ff and U,, the abscissa in this figure corresponds to a variation 
in 0 (or in 5) only. The amplifications of both modes (triangles correspond to m = 0 
and squares to m = 1)  are almost identical, irrespective of the criterion used, in the 
range Rile considered (i.e. Rile 2 18). 

The different criteria produce, however, some markedly different results. While the 
maximum amplitude of u increases initially and saturates smoothly with downstream 
distance, the integral quantities shown in figure 15 (b ,  c) attain a local maximum at 
2xF, el U, x 0.07, which corresponds to the excitation at  which 8 starts to increase 
rapidly with x. 

Although the maximum amplitudes of the oscillations, or their area-integrated 
average, actually decay beyond St, 2 0.09 (figure 15a, c), the integral IuI rdr  
increases with Ste (figure 15b) simply because the width of the shear layer increases. 
The total energy contained at the excitation frequency may increase with x, in spite 
of the fact that the local amplitudes may actually decay; this apparent contradiction 
in terms stems from the divergence of the shear layer. 

The radial distributions of the amplitudes and the phases of the u-component of the 
fluctuations for both modes of excitation are compared a t  Rile = 71 and plotted in 
figure 16. The corresponding theoretical distributions of amplitudes and phases of 
both modes, which appear to be identical when drawn on the scale of this figure, agree 
fairly well with experiments. 

3.2.2. The initial evolution of disturbances in the unperturbed jet 
Linear stability theory applied to a parallel shear layer suggests that only the most 

amplified wave is bound to dominate the flow field some distance downstream 
(Michalke 1965) because, at the initiation of the flow, the background disturbance 
may be so broad that it can be legitimately represented as ‘white noise’. The 
exponential amplification of the most unstable wave with downstream distance acts, 
therefore, as a natural filter. For a velocity distribution described by a hyperbolic 
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FIGURE 15. Overall normalized amplification rate of the streamwise velocity component of the 
disturbance aa a function of the non-dimensional frequency 2 x 4  01 Uj : A, m = 0 ; . fl, 1. The data 
were obtained for lJ, = 8.1 m/s, Ff = 204 Hz and D = 25.4 mm. 

tangent of the transverse coordinate, y", the Strouhal number St, corresponding to 
the most amplified disturbance fr is equal to St, = fi O/Uj = 0.017, where 6 is the 
initial momentum thicknew (which is constant) and Uj is the jet velocity measured 
in the plane of the nozzle. Measurements reported in the literature (Gutmark & Ho 
1983; Husain t Hussain 1979) indicate values over the range 0.009 < St, < 0.018. 
Moreover, since most of the jets emerge from smooth and well-designed nozzles, the 
boundary layers on the inner wall of the contractions are generally laminar and can 
be represented by the Blasius profile (Drubka 1981). The initial momentum thickness 
in the plane of the nozzle should therefore vary as U?. Provided the flow does not 
spread radially with increasing distance 2, the most amplified frequency in the shear 
layer is given by 

f, = 0.017 3 = C, q, (3.15) 

where C, is constant. This relationship was verified experimentally by Sato (1956) 
and by Wehrmann (1960). More recently, however, when fast Fourier transforms 
replaced analog 'frequency meters', the experiments were repeated at small incre- 
ments of U, (Gutmark & Ho 1983), which led to the observation that the prevailing 
frequency varies in a stepwise manner with increasing U, rather than following (3.15). 
This effect may stem either from the facility or from the experimental procedure used. 

It was suggested initially that the stepwise behaviour of the predominant 

4 
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(r - Rtve 
FIGURE 16. The phase-locked (a) amplitude and (6) phase distributions in the forced jet with forcing 
frequency 204 Hz, D = 25.4 mm and U, = 8.1 m/s measured at R#/O = 71. A, m = 0; m, m = 1;  
-, theoretical curve for m = 0; - - -, theoretical curve for m = 1. 

frequency resulted from probe interference (Nagib Hussain, 1980, private communi- 
cation). Experiments carried out by Einav et al. (1981) using, simultaneously and 
separately, a hot-wire probe and a LDA, which is a non-intrusive instrument, refuted 
this suggestion entirely. Gutmark & Ho (1983) attributed the stepwise behaviour to 
an extremely small upstream disturbance detected in a plenum chamber, which 
produced a spatially coherent disturbance in the plane of the nozzle. Due to the large 
area ratio between the cross-section of the plenum and the nozzle, any acoustic wave 
in the plenum will produce a plane wave at the exit of the nozzle, and therefore the 
initial evolution of disturbances in a jet is expected to be axisymmetric. A coherent 
wave present in the plenum chamber does not decay along the contraction and nozzle 
(Blackwelder & Kovasznay 1972) and may excite (in a linear or nonlinear manner) 
an instability wave in the shear layer. The turbulence level in the centre of most 
laboratory jets varies between 0.2 yo < u’/ U, < 0.6 yo. Such background turbulence 
is seldom homogeneous, and therefore one may easily expect coherent waves having 
initial amplitudes larger than 1 % to dominate the flow at the exit plane. Since there 
is no obvious mechanism dissipating these waves, they may dominate the instability 
frequency wave over some range of velocities, producing a stepwise variation of the 
predominant frequency with Uj. This notion is explored and discussed in the following 
section. 

The relationship presented in (3.15) stems from the assumptions that the inviscid 
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FIGURE 17. (a) Mean velocity profiles measured at various downstream locations for several jet exit 
velocities. The solid line is the analytical expression given by equation (3.16). (a) Variation of the 
momentum thickness with jet exit velocity; ,A, measurement; -, a curve representing the 
relation e a @. 

linear stability theory baaed on a hyperbolic tangent velocity distribution is 
applicable, and that the initial momentum thickness 0 is proportional to Uyi. 
Experiments show (figure 17 (a) )  that the characteristic shape of the velocity profile 
is retained over 0.125 < x / D  < 0.25 for velocities ranging from 3 to 8 m/s. All the 
measured profiles fit the equation 

- 
0- ( r )  - 0.5 [ 1 - tanh (G)] , 
uj 

(3.16) 

which is plotted in the same figure (solid line). The variation of the momentum 
thickness with Uj at x / D  = 0.25 is shown in figure 17, where the actual data points, 
marked by triangular symbols, fit the relation B oc U$ in the range of velocities 
considered. One therefore expects (3.15) to apply, provided the background disturb- 
ance level is uniformly distributed in the spectral domain. Power spectra measured 
on the axis of the jet in the plane of the nozzle indicate that this is not the case, in 
spite of the fact that the turbulence level varied between 0.1 % and 0.17 %. Three 
curves representing power spectra of the streamwise velocity component measured 
on the centreline of the jet a t  x / D  = 0 and corresponding to jet exhaust velocities 
of 3 , 5  and 8 m/s are plotted in figure 18. The spectra were high-pass filtered at 20 Hz 
and normalized by the highest peak of the spectrum corresponding to Uj = 3 m/s. 
The spectral distributions at all velocities tested are not homogeneous; the peaks in 
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FIGURE 18. Power spectra of the streamwise velocity component measured at x / D  = 0 and 
r / D  = 0.-, U, = 3 m/s;---, 5 m/s; -- , 8 m/s. All the spectral distributions are normalized 
by this highest peak of the spectrum corresponding to U, = 3 m/s. 
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FIGURE 19. Normalized power spectra of the streamwise velocity component as measured for 
various jet exhaust velocity and corresponding calculated spatial growth rates. The spectral 
distributions were measured at: -, x / D  = 0.25, r = Ri; - - -, x / D  z 0, r = Rk (a, d)  U, = 3 m/s; 
(a, e) 5 4 s ;  (c,f) 8 m/s. 
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FIGURE 20. (a) Power spectra of the streamwise velocity component measured at: --, 
x / D  = 0.125, r = R+ -, x / D  = 0.25, r = Rt for U, = 8.1 m/s; --- , predicted spectrum at 
x / D  = 0.25 and r = Rt. All spectra are normalized by the highest peak of the predicted spectrum. 
(b) calculated spatial growth rate as a function of the dimensional frequency. 

the spectra occur at  identical frequencies regardless of the jet velocity (see also Crow 
& Champagne 1971). Similar peaks in the power spectrum were observed in the centre 
of the shear layer at  z / D  x 0 (i.e. near the tip of the nozzle) as described by the dotted 
lines in figure 19 (a, b, c ) ,  corresponding to U, = 3, 5 and 8 m/s respectively. These 
peaks are broader than their counterparts on the jet centreline, and their relative 
amplitudes might also differ MI a result of the amplification of disturbances in the 
boundary layer. Using the superposition property, the possible correspondence 
between the linear stability theory and the observed spectrum farther downstream 
is first examined qualitatively. The solid lines in figure 19(a,b,c), are the power 
spectra of the streamwise component of velocity measured at the centre of the shear 
layer at  z / D  = 0.25 and at U, = 3, 5 and 8 m/s respectively. Each spectrum is 
normalized by its maximum value, which is also used to normalize the corresponding 
spectra measured at z / D  =0,  and represented by dotted lines. The calculated 
amplification curves for the appropriate Rile for each of the velocities chosen are 
plotted in figure 19(d,e,f) underneath the spectra. For all three velocities, the 
prevailing frequencies at z / D  = 0.25 attained a value close to the most unstable 
frequencyf(, in spite of the fact that the input (i.e. the spectrum at z / D  = 0) was 
almost identical for all. However, the exact spectral distribution at z / D  = 0.25 is 
strongly dependent on the input. For example, when the most amplified frequency 
at U, = 5 m/s is in the neighbourhood of 200 Hz (ft > 200 Hz) but a distinct peak 
in the input spectrum in the vicinity offi occurs at a lower frequency, then the exact 
value of fr and the prevailing frequency measured may not be the same. Thus, the 
value of the most energetic frequency observed at any point in the flow is an outcome 
of both the initial spectral distribution and the amplification curve. One might also 
notice that the spectra observed at  z / D  = 0 and 0.25 have approximately the same 
level for frequencies greater than the neutral frequency; in fact, the input spectrum 
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level might exceed the level of the spectrum measured farther downstream because 
these waves decay spatially. 

Knowing the spectrum at a given x / D ,  one may attempt to predict the shape of 
the spectrum farther downstream by using the superposition property of the linear 
stability model. This type of calculation is quite restricted because it assumes that 
the mean flow is not altered during the interval and that i t  does not account for 
dissipation; nevertheless, it was used for a range of downstream distances 
(0.125 < x / D  < 0.25) in which the flow does not diverge and was applied only to the 
amplified waves. 

The broken line in figure 20 (a) is the spectral distribution of the streamwise velocity 
component measured at x / D  = 0.125 and r = R; when the jet exhaust velocity was 
8.1 m/s; the solid line represents the spectral distribution measured at x / D  = 0.25 
and r = Ri. The amplification shown at the bottom of figure 20 is used as a transfer 
function applied to the spectrum measured at x / D  = 0.125 to predict the spectrum 
at z / D  = 0.25. The predicted spectrum is represented by the dotted line in figure 
20(a). Since the maximum value of the predicted spectrum is used to normalize all 
spectra plotted in figure 20 (a), the comparison between the predicted spectrum at 
z / D  = 0.25 applies to the shape as well as the amplitude. 

The agreement between the predicted and measured spectra is fairly good. The 
most energetic frequency in the input spectrum (180 Hz) decreased at  x / D  = 0.25 
because it was not as strongly amplified as the most unstable frequency (430 Hz). The 
small peak in the spectrum measured a t  x / D  = 0.125 at f = 430 gained in significance 
but it did not become as strong as the peak at f = 550 Hz, which was amplified at  
a slower rate than the amplitude corresponding to f = 430 and was significantly above 
the peak in the spectrum occurring at f = 430 Hz to begin with. 

3.3. The effects of mean flow divergence 
The mixing layer spreads rapidly when the distance from the nozzle exceeds 
x / D  > 0.5 and, consequently, the divergence of the mean flow should be considered. 
The effects of divergence are of particular interest for 0.5 < x / D  < 0.8, where the 
ratio Ri/O is still large. Since the mean velocity profiles are not self-similar, as they 
were in some previous investigations (e.g. Gaster et al. 1985), the amount of data that 
can be used for computational purposes (i.e. for forming derivatives with respect to 
the streamwise coordinate x )  is therefore limited. The data collected at only 9 
z-stations located approximately one-eighth of a wavelength apart were to be used 
for applying the linear stability model to a divergent flow, in comparison with similar 
calculations (Gaster et al. 1985) where 51 or more cross-sections were used. In order 
to ascertain that these data may suffice for the computations, the results of Plaschko 
(1979) were first reconstituted using the input describing the mean flow from 9 
cross-sections only. The agreement is sufficiently good to inspire confidence whenever 
these calculations are applied to the current experiment. For this purpose, the results 
described in figure 15 are replotted using a different scale in figure 21 and are 
compared with linear stability calculations applied to the slowly divergent mean 
flow. 

The calculated amplification of disturbances with downstream distance exceeds 
the experimental results by a factor of 2 to 3 (see also Gaster et al. 1985; Strange 
1981 ; Strange & Crighton 1983). Surprisingly, however, the predicted amplification 
of the helical mode exceeds the calculated amplification of the axisymmetric mode 
(figure 21) in contradiction with the dimensional arguments presented for Rile B 1. 
The reason for the discrepancy was attributed to the different mean velocities 
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FIQURE 21. Spatial amplification of the excited wave with with F, = 204 Hz and U, = 8.1 m/s. 
Experimental results: A, m = 0; a, 1.  Linear stability calculations applied to the slowly divergent 
mean flow: -, m = 0; --- 9 ,  1 .  --- , f or m = 1 using the mean flow applied to m = 0. 

encountered in the experiments (see figure 11). This idea was verified by recomputing 
the amplification rates for mode 1 using the mean velocities applied to mode 0. The 
results of the calculation for both modes can hardly be distinguished (figure 21). Why 
then are the mean velocities so different in the same experiment 1 The differences stem 
from different excitation amplitudes ; the initial amplitude of the axisymmetric mode, 
being higher, resulted in a more rapid lateral spread of the shear layer (due to a 
nonlinear interaction) which, in turn, inhibited the amplification of the excited mode. 
Shifting the virtual origin of the mean flow associated with the helical mode upstream 
until the data shown in figure 11 collapsed onto a single curve eliminated completely 
the differences in the rate of amplification of the two modes. This demonstrates the 
shortcomings of the linear stability theory, which decouples the initial amplitude of 
the excitation from rate of spread of the shear layer while, in reality, these effects are not 
separable. Because the flow remains parallel for the helical mode for a slightly longer 
distance (figure 11) than it does for mode 0, it enables mode 1 to amplify by a larger 
factor (provided ai 9 0 while the flow was parallel). Therefore, the calculation of total 
amplification with downstream distance based on the assumption of self-similarity 
of the mean flows with a known rate of spread (dO/dz) is not meaningful unless the 
corresponding absolute value of the initial amplitude is known. 
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3.4. Concluding remark8 

One may conclude that the linear stability model predicts correctly the local 
distribution of amplitudes and phases in an axisymmetric jet excited by external 
means. The model used as a transfer function is also capable of predicting the entire 
spectral distribution of velocity perturbations in an unexcited jet over short distances 
in the direction of streaming. The axisymmetric jet column surrounded by a thin 
shear layer admits the evolution of an infinite number of helical instabilities in 
addition to the axisymmetric instability which is independent of the azimuthal 
coordinate. The possibility that numerous instability modes will coexist and interact 
among themselves is of special interest since it adds a new degree of complexity to 
this configuration. The decreasing dimension of the jet column in the direction of 
streaming selectively filters the higher azimuthal modes, limiting the number of 
possible nonlinear interactions. 
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